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Abstract

N
~

Statistical data modeling is a field of statistical
reasoning that seeks to fit models to data without using
models based on prior theory; rather one seeks to learn the

model by a process which could be called statistical model
ot VS

o~ -

identification. When analyzing a sample‘xl} D
statisticians should not confine themselveé to either fitting

a Gaussian distribution, or transforming the data to be
Gaussian. Such an approach ignores the importanceof bimodality
as a feature of observed data, and also ignores the need to fit
to data probability model based distributions which could sug-
gest probability models for the causes generating the data.
This paper describes an approach to statistical data modeling
which emphasizes estimation of quantile and density-quantile
functions; it treats the Gaussian distribution as just one of

the available distributions.

~

*Emanuel Parzen is Distinguished Professor at the Institute of Statistics,
Texas A & M University, College Station, Texas, 77843. This research
was supported in part by the Army Research Office (Grant DAAG29-80-C-0070).




Sections 1-3 introduce the role of quantile functions in
statistical modeling, the sample quantile function, and location
and scale parameter models. Quantile function based
descriptors of a probability distribution are defined
(Section 4). Section 5 defines quantile box plots and trans-
formation distribution functions; an example of their appli-
cation is discussed in Section 6. A quantile version of "boot-
strap" simulation methods is outlined in Section 7. Data summary
by a few values of the sample quantile function is discussed
(Section 9). Section 8 discusses quantile function formulations
of robust estimators of location and scale.

The concepts discussed in this paper are best summarized
by a list of some of the terminology defined: quantile function,
density-quantile function, score function, sample quantile
function, sample quantile-density function, histogram-quantile
function, sample entropy, score deviation, tail exponents, mode
percentile, quantile box plot, cumulafive weighted spacings
plot, quantile bootstrap, minimum residual score deviation

estimation, and 19 quantile values for universal data summary.
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1. Some Basic Concepts of Statistical Modeling and Estimation

One of the basic problems of statistical data analysis is
the one-sample problem: given a sample Xl, e, Xn which we
assume initially to be independent observations of a population
characteristic represented by a random variable X, we would like
to infer the probability distribution of X.

The probability distribution of X is usually represented

by its distribution function
F(x) = Pr [X < x]

and by its probability density function
f(x) = F'(x)

In this paper we assume X is continuous and possesses a proba-
bility density function.
The problem of statistical inference is often defined to

be parameter estimation; then one assumes that the true proba-

bility density function f(x) belongs to a family of functions

fe(x) indexed by a vector 6 of parameters 015 -y 6L
The maximum likelihood estimator of 8 is defined to be a function

8 of Xl’ e, Xn satisfying L(é) = mgx L(8) , defining

n
RO = (K, X = T £

L(8) is the joint probability density of the observed data

when 6 is the true parameter value.




Maximum likelihood estimation is not a principle to be
accepted uncritically; statisticians delight in constructing
examples in which it leads to unbelievable conclusions. To
understand when and why maximum likelihood estimation works,
we have to introduce empirical distribution function (EDF)

F(x) defined by

?(x) = fraction of Xl, ce e, Xn < x

To graph F(x) , one determines the order statistics

X(l) < X(Z) T X(n) which are the sample values (assumed

to be distinct) arranged in increasing order; then

F(x) = 4 . X

1. (J) i X < X(j+1) , J = 01 1) 2:

The concept of likelihood is now defined as average log

likelihood
1 n
Ln(e) == log -E fe(XJ)
j=1
L 3 (X,)
= = log £ :
n j=1 8]

= jm log £, (x) dF(x)

One can regard Ln(e) as a measure of "distance' between the

data represented by F, and the model represented by fe(x)

., n




Another important interpretation of Ln(e) is an estimator
of a '"distance" between the true probability density f(x) and
the model fe(x) ] An important role in the theory of statis-
tical inference is played by the Kullback-Liebler information

number, or directed divergence (see Zacks (1971); it is defined

by
- £
I(f;fe) = Ef [log fg]
® £(x)
= f(x) log dx
I erx)
= H(f; £) - H(f;fe)
defining

H(f;g) [_ () log g(x) dx .

It has the properties: l(f;fe) > 0 and I(f;£f) = 0 .

The average directed divergence between f and fe given a

sample Xl, ceey Xn is
f(X o, XD
s - 1 19 » n
In (F:fg) = 7 B¢ log r %)
1 0 o f(x ,...,xn)
aﬁ'f .'-I f(xl,.-.,xn)logf— (x '...'x ) dx1,--.,dxn
- -0 671 n
= I(f;fe)
”A‘ir"‘;‘”“—“'“ e Lo —
! Y



A criterion for model fitting is to choose fe to minimize

I(f;fe) or an estimator of I(f;fe) ; an estimator would be

~

I(E;fe) = H(f; f) - H(E;£q)

N~
if f were a non-parametric estimator of f. While F is a natural
non-parametric estimator of F, there does not exist a natural
non-parametric estimator of £. However a natural non-parametric

estimator ﬁ(f;fe) of H(f;fe) does exist, namely the average log

likelihood Ln(e); in symbols,

[s o]

H(£;£) = [ log £,(x) dF (x)
A natural estimator H(f;f) will be given below. Akaike (1973)
has pioneered in emphasizing that to find 3, the parameter values

8 which minimize
I(£:£y) = H(E£) - H(E:£g)

it is not necessary to know ﬁ(f;f) ; one need only choose 8 to
maximize Ln(e) . One approach to measuring how well the maximum
likelihood model fa "matches" the data would be to measure how
significantly different from zero is i(f;fé) . Other approaches
to measuring the mathematical fit of a model to data are intro-
duced in this paper using various representing functions of the
data and model which are called the "raw' and '"smooth' repre-
senting functions respectively. One of our goals is to develop
means of judging goodness of fit of a family f,; of probability

densities to a true probability density before forming

*v».—ﬂ,—-' v B
)
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estimators 8 of the parameters.

This paper discusses the increased insight to be obtained
by describing the probability distribution of a random variable
X by its quantile function Q(u) , 0 <u <1 , and density-

quantile function fQ(u) , 0 < u <1 . Define

F_l(u) = inf {x:F(x) > u} ,

[]

Q(u)

£Q(u) £(Q(w))

The quantile-density function q(u) , 0 < u <1 , is the derivative

of the quantile function:

q(u) = Q' (w

The score function is (-1) times the derivative of the density-

quantile function:
J(u) = -(£fQ) "(w)
An important identity is
£Q(uw) q(uw) =1
which follows by differentiating the identity
FQ(u) = u.

We can now give an example of the advantages of thinking
""quantile'" in the sense of thinking in terms of £Q(u) rather

than £(x) . Two measures of the smoothness of a function are




the integral of its logarithm and the integral of its derivative

squared. Thus

1 o
IO log fQ(u) = [ _f(x) log f(x) dx = H(f;f)

is the Shannon information measure or entropy of f, while the

Fisher information measure of f is
1 2 L2
IO [J(u) [“du = IO 1£Q' (u) |“ du
l 2 @ 1] 1 2
- £'Q(u) _ [ £'(x) |
fo lfQ%GT_l du = [ = dx
One can give a natural estimator of entropy:
- 1 .
H(f;£) = - IO log q(u) du

where i(u) is the sample quantile-density defined below. We

call H the sample entropy.

The density quantile function as a function of interest
for itself was introduced by Parzen (1979). Tukey (1965)
pointed out the significance of Q(u) and q(u) under the names
"representing' function and "sparsity" function. A review of
some standard approaches to statistical modelling is given by

Ord and Patil (1975).

Y. - ] T ———
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2, Sample Quantile Function

To a batch of data one can define a sample quantile function
Q(u), 0 < u < 1, which provides a "universal" description and
summary of the data. However, there is no universally accepted

definition of é(u).

Given a sample Xy, ..., X, , with order statistics
X(l) < X(Z) < ... < X(n) one could define Q by
~ _ w1
Q(u) =F "(uw , 0 <u=<l;

then Q is piecewise constant,

Q(u) = X(j) , i%l <u < % , j3=1,2, ..., n

One often prefers a piecewise-linear definition of Q(u) ;

then one defines

One also defines values for u = 0 or 1, say Q(O) = X(l) and
6(1) = X(n) . At other values of u in 0 < u < 1 , one defines
Q(u) by linear interpolation of its values at the grid points
(j-0.5)/n or j/(n+l) . Then Q(u) is differentiable, and

qu) = Q' (u) may be expressed in terms of the sample "spacings”
n Xgay T X!

When Q(u)

it

X(j) at u = (j-0.5)/n , then( =1, 2, ..., n-1),

a j-0.5 j+0.5
Q(u) =n {x(j+1) = X(j)} ’ l—n—— < u < n .




-

e - i e .

A favorite tool of statistical data analysis is the
histogram which can be defined as a piece-wise constant esti-
mator f(x) of the density function. The sample quantile
function Q(u) is then defined as the inverse of the sample
distribution function F(x) = [* f(y) dy . The insight in a
histogram seems to me to be made more visible by plotting

instead the histogram-quantile function f(é(u)), 0 <uc<l1

A raw estimator of fQ(u), called a raw density-quantile
function and denoted fQ(u), can be formed from the reciprocal
of a slightly smoothed estimator of q(u); for example, one

might define

2h

£Qu) = - .
Q(u+2h) - Q(u-2h)
The sample quantile function Q(u), 0 <uc<l, is a
stochastic process (or time series) whose asymptotic distri-
bution can be shown to satisfy (under suitable assumptions on

fQ; see Csorgo and Revesz (1978)).

L
{/MfQ(u) {Qu) - Q(u)} , 0 <~ u < 1}—> = {B(u), 0 < u < 1}

where {B(u), 0 < u < 1} , denotes a Brownian Bridge stochastic

process with covariance function

E denotes "identically distributed as'", and the convergence is

in the sense of convergence of distribution of stochastic processes.

——p—=




The asymptotic distribution of the sample spacings, and
thus of q(u), also have been extensively investigated but is
difficult to summarize briefly. One important fact is that

for any fixed Up, -ees U

fQ(ul)d(ul), o fQ(uk)i(uk)

are asymptotically independent and distributed as an exponential
distribution with mean 1.

The difference between the roles of distribtuion functions
and quantile functions in statistical inference is made clear
by considering the basic goodness of fit problem: test the

hypothesis Hy
HO: F(X)=FO(X)’—w<oo<oo,

that the true distribution function F(x) equals a specified

distribution function Fo(x). One could compare the sample
distribution F(x) to Fo(x) (or equivalently test whe.her the
transformed random variables FO(XI)’ e, FO(Xn) are uniformly
distributed) by comparing ?(Qo(u)) to u. The applicable

asymptotic distribution theorem is

(/alF(Qy(u)) - u), 0 <u<l) — = (Bw ,0<ucl)

Alternately one could compare quantile functions. Instead

of comparing Q(u) to Qy(u) = Fo~l(u), one could compare the

sample quantile function of FO(Xl)' ce ey Fo(Xn) , which equals

e ¢ edees ot
a2 L
e ———

o ——— " “——————————y—-.
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FO(Q(u)), to u. The relevant asymptotic distribution theorem

is

-

{(/m{Fy(Q(u)) - ul , 0 <uc<lid {B(u) , 0 <u s 1}

The problem of statistical modeling can be elegantly defined
in terms of quantile functions: one seeks to determine distri-
bution functions Fo(x) such that FO(Q(u)) is not significantly
different from a uniform quantile function u. Given a para-
metric family of distribution functions Fe(x) an optimal esti-
mator 0 of o could be defined as the value of 0 which minimizes
the distance HFG(Q(U)) - u|]| for a suitable measure of distance
between functions on the interval 0 to 1.

An example of a distance is the conventional L, distance

2 1 2
“gl - 82“ = fo |81(U) - 82(“)' du .
However, one would like to choose the distance so that the cstimator

6 would be asymptotically efficient. Such a distance is pro-

vided by the reproducing kernel Hilbert space (RKHS) norm of

the covariance kernel of the Brownian Bridge stochastic process;

it can be defined over any sub-interval 0 < p <u < q <1

It

2 L] )
I18;-82115 4 Iglgl(u) - gz(U)zdu + %Igl(p) - gz(p)l2
+ el (@ - g@

‘181'821|%,1 = félgi(u) - gé(u)lz du .
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;The inner product is

(81:82)p q = Iggi(u) gy(u) du + % g1(pP) 8y(p)

+ I%agl(q) g, (q)

A minimum distance criterion for statistical estimation
of the parameters 6 of a parametric family Fo of distribution

functions is to choose 6 to minimize
. 2 _ Lo - 2
|| FoQ) - ul|” = folfe(Q(u)) q(u) - 1]° du
One may show this criterion to be asymptotically equivalent

to maximizing likelihood, or minimizing the estimated directed

divergence I(f,fe)

I(E;£,) [ E(x) log %S%%) dx

1
- [y log {£4(Q(uw) q(u)} du
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3. Location and Scale Parameter Models.

An important parametric model for a distribution function

F(x) 1is

F(x) = Fy (555

where FO is specified, and p and o are unknown (location and

scale) parameters to be estimated. Then

Q(u) = u + 0 Q) ,
q(U) =0 q0<u) ’
fQ(u) = %‘ foQo(u)

Two important choices for FO are:

(1) the normal or Gaussian case:
X

Fo(x) = o(x) = [ o(y) dy ,

fox) = o(x) = L exp - %x ;

(2) the exponential case:

Fo(x) = 1-e % | fq(x) = ¥ .
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The quantile functions, score functions, and density-
quantile functions of some standard probability laws are given
in the Table. Graphs of density-quantile functions are given
in the Figures.

Because of the way that fQ(u) depends on u and ¢ , one

can introduce functions to test hypothesis HO: Qu) = u + JQo(u)

which do not require estimation of y and o before testing the

hypothesis. Define

1
o9 = o £oQw a(w) du

d(u) = 53 £qQp (W q(w)
u
D(u) = [5 d(u') du’

We call D(u) a transformation distribution function, and d(u) a

transformation density. The null hypothesis Hy is equivalent

to

D(u) =u, d(u) =1, 0<uc<l

Given an estimator D(u) ,» 0 <u <1, the deviations of D(u)
from linearity can be used to test whether a sample consists
of random variables satisfying Ho, or consists of random
variables satisfying Ho plus outliers. Such techniques would

be useful for many diverse applications.
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Figure A
Density Quantile Functions fQ(u) , 0 <u <1 of some

common probability distributions Lognormal, Logistic, Normai,

Cauchy, Weibull with various shape parameters, and Extreme Value.
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4. Quantile Based Measures of Average, Deviation, Tail Behavior,

and Modes.

We propose that the sample quantile function provides a

representing function for the sample in the following senses:

(1)

(2)

(3)

Models for the data should be viewed as being in

one to one correspondence with the smooth quantile
functions Q(u) , 0 - u - 1 which are their representing
functions,

The criteria for testing whether a model fits the data,
should be based on measures of fit between the repre-
sentating functions Q(u) and é(u) ,

Since the sample is summarized by its representing
function Q(u) , any descriptor of the sample should be

expressible as a function of a(u) . Similarly any

descriptor of the distribution of X should be expressible

as a function of Q(u)

There are four characteristics of a probability distribution

which we would like to infer from the data:

(1)
(2)
(3)

(4)

location, represented by a measure of average;
spread, represented by a measure of deviation ,

tail behavior, represented by the behavior of £Q(u) as

u tends to 0 and 1 ,
modality, represented by the number of modes (relative
maximum) in the probability density or in the density-

quantile function.
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Location and spread parameters for a distribution seem to
be meaningful only when it is unimodal; otherwise, one may
want to find an associated variable whose values can be used to
divide the original sample of X values into two or more samples,
each of which is unimodal.

A parameter representing average or location will be denoted

by u; it could be defined by one of the following concepts:

1l

median u

Q(0.5) ,
%{Q(0.25) + Q(0.75)}
mid-range p = %{Q(0) + Q(1)}

mid-quartile u

I}

mean u = fé Q(uw)du = [T _xf(x)dx .

A parameter representing deviation or spread or scale will

be denoted by ¢9; it could be defined by one of the following

concepts:

interquartile range o = Q(0.75) - Q(0.25)

1
Score deviation ¢ = fO Jo(u)Q(u)du with score function Jo(u)

?

standard deviation o =

(/5 Qw -.]éQ(t)dt}Zdu}%

The properties of £Q(u) describe the tail behavior, modality,

and symmetry of the distribution. Indices oy and a, such that

%1
fQu) ~ u -~ asu — 0

®2
fQ(u) ~ (l-u) “ as u — 1
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may be rigorously defined when they exist by

_ lim uJ(u) _ lim (L-u)J(u)
1 T u — 0 TQuy 2 T u — 1 IQu)

We call ay the left tail exponent, and a, the right tail ex-

ponent.

The tail exponent a indicates whether the tail is short,

medium, or long: o < 1, short; a = 1, medium; a > 1, long.

The Gaussian distribution has a;p = apy = a = 1, the expon-

ential distribution has a, = 0 and 02

1 1; the Cauchy distri-
bution has a; = a, = a = 2 . The graphs of their £Q functions
are given in Figure A. Our idcas of the canonical shapes of
G.stributions seem to me to become unified when they are
formulated not in terms of the shape of f(x) but in terms of
the shape of fQ(u); for example, J and U-shaped distributions
correspond to a < 0 .

When £fQ(u) is unimodal, an important descriptor is the

mode percentile, denoted p « It is defined to be the

mode
value of u at which £fQ(u) achieves its mode (or maximum value).
The value of Pmode and its relation to 0.5, is a quick sum-
mary of the skewness of the distribution.

When p-mode > 0.5 , the distribution is conventionally
described as being skewed to the left; this occurs if we assume

that £Q satisfies fQ(u) < fQ(l-u) , 0 < u < 0.5 , which implies
that Q(u) + Q(1-u) < 2Q(0.5) , and consequently that

mean < median < mode

et T A = it e s i . S| s B .

¢ g ree————.
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Similarly p-mode < 0.5 (and the distribution is skewed to
the right) if we assume that fQ(u) > £Q(l-u) , O <u < 0.5,
which implies that Q(u) + Q(l-u) > 2Q(0.5) , and consequently
that

mean > median > mode

The fact that a density-quantile function is always defined
on the unit interval, while a density function f(x) is defined

on an infinite interval, seems to me to make the former easier

to estimate.

e ————— g P
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5. Quantile Box-Plots and Transform Distribution Functions

The most dramatic new data-analvtic tools suggested by the
quantile and density-quantile approach are Quantile Box plots
of Qu) , 0 <u < 1, and plots of sample transformation dis-
tribution functions J(u) , 0 <u <1l

Quantile box plots are formed of the original data and of
the data after transformations such as square root, logarithm,
and reciprocal. They provide quick procedures for estimating
location, scale, and shape. A quantile box plot consists of a
graph of a quantile function on which is superimposed various
boxes with vertices (p,Q(p)) , (p,Q(1-p)) , (1-p, Q(p)) ,

(1-p, Q(l-p)) which we call a p-box. One usually chooses
p=1/4, 1/8, 1/16 . Within the quartile box (p = 0.25), one
draws a median line with vertices (0.25, 6(0.5)), (0.75, Q(O.S)).
An approximate confidence interval for the median Q(O.S) is
indicated by a vertical line with vertices (0.5, Q(0.5) + 1Q/vn)
where n is the sample size and IQ = 6(0.75) - 6(0.25) is the
inter-quartile range. The symmetry of the distribution is
judged by the symmetry of Q(u) within the quartile box.

A quantile box plot is an extension of the idea of a box
plot introduced by Tukey (1977).

A transformation distribution function, or cumulative

weighted spacings function, is defined by

. u
D(u) = [5d(t) dt , 0 <uc<l,
where
. L ) ) 1 .
d(u) = L £0Qpu) qu) , o4 = IO £,Qp(w) q(u) du .
"*’ e ke ham - ""—""‘“"—‘7—"; o —— T - — — - -
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Its pseudo-correlations are defined by

1 ; .
5(v) = fg ¥ dqu) au, v =0, 1,

The asymptotic distributional properties of d(u)are similar to

those of the sample spectral density of a stationary time series.

Tests of HO could be based on fé log d(u) du : the deviation

from D(u) = u of 5(u) ; the deviation from p(v) = 0 of

p(v) , v=1, 2,

To estimate the density-quantile function fQ(u) , one uses
d(u) to form smooth estimators d(u) of d(u) . Two main
approaches are:
(1) kernel method -- for a suitable kernel K
A l"\'
dK(u) = IO d(t) K(u-t) dt ;
(2) autoregressive method -- for a suitable order m
_ Al ~ 2miu A 2mnium, -2
am(u) = om|1 + o (e + ...+ (me |
where Gm, &m(j) , J =1, ..., m are determined from certain
linear equations (Yule-Walker equations) in
ov) = | 2riuv d(u) du, v =0, +1, , + m

The autoregressive estimator, including procedures for
selecting the order m, are implemented in a computer program
ONESAM whose use is illustrated. It should be noted that choosing

order m = 0 is equivalent to accepting HO.

- —_ R, - . e 0 e o
}7-4?__.5__ - . —— ———— —
! P e
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A solution to the important problem of estimating fQ(u)

is provided by the "autoregressive' estimator
£Qu(u) = £4Qp(w)  {5g dp (w7t

Some diagnostics we use for choosing the order m of the
autoregressive estimator me(u) are the square modulus pseudo-
correlations IB(V)]Z ; the residual variances oz(m) ; the

Akaike order determining criterion, for sample size T,
AIC(m) = log e

and Parzen's criterion

CAT (m)

it
3
I o~8
>
1
N
]
Q >
1
~N

whose shape in practice is similar to the shape of AIC.
Another approach to estimating fQ(u) which deserves

investigation is to estimate log fQ(u) by smoothing - log a(u)

}--“--"w—-—"“?—— . - ] ant
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6. Examples

To illustrate how to use Q, D, and fQ in statistical

data analysis, let us consider data from Tukey (1977),

p. 117 which lists seasonal snowfall in Buffalo, New York
and Cairo, Illinois, from 1918-19 to 1937-38, and
asks '"What light do these two batches throw on how they should
be expressed.'" To answer this question one approach might be
to examine the quantile box-plots of the batches (Figure B);
the quartile box in Buffalo appears symmetric while in Cairo
it does not. One might attempt a transformation of the Cairo
data; we choose the square root and conclude that its quartile
box is symmetric. Does this prove that Buffalo snowfall and
square root of Cairo snowfall are Gaussian?

A rigorous approach is to form the cumulative weighted

spacings function

I s0~ L (t)q(r)dt

D(u) = ————
fé oo l(t)q(t)dt

whose deviations from u provide a test of Gaussian-ness which
does not first require estimation of p and ¢ (mean and standard
deviation). The graphs of D(u) in Figure C indicate clearly
that Buffalo snowfall and square root of Cairo are Gaussian,
while Cairo snowfall is not Gaussian.

The true character of the Cairo snowfall data emerges when
one estimates its fQ function; it turns 6ut to be bimodal, which
we interpret to mean that there are two kinds of snowfall years

in Cairo, Illinois -- light and heavy.
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Even though various diagnostic tests of the square roots
of Cairo snowfall data indicate that it is Gaussian the order
L autoregressive estimator of the density quantile indicates

that bimodality is a possible alternative hypothesis.
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Order Buffalo Cairo Cairo Square
Statistics Root
1 25.0 0.4 L6325
2 39.8 1.2 1.0954
3 46.7 1.6 1.2649
4 49.1 1.8 1.34106
S 49 .6 2.7 1.6432
6 51.6 2.9 1.7029
7 53.5 3.0 1.7320
8 54.7 4.0 2.0000
9 60.3 4.5 2.1213
10 63.6 5.4 2.3238
11 _ 64.8 6.2 2.4900
12 69.4 6.8 2.6077
13 71.8 7.2 2.6833
14 72.9 7.4 2.7203
15 79.0 11.3 3.3615
16 79.6 11.5 3.3912
17 80.7 11.5 3.3912
18 8l.6 12.4 3.5214
19 83.6 13.9 3.7283
20 103.9 14,1 3.7550
Mean p 64.1 6.5 2.375
Q(0.25) 49.6 2.7 1.6432
Q(0.50) 64,2 5.8 2.4069
Q(0.75) 79.6 11.5 3.3912
IQ 30.0 8.8 1.748
S.D. & 18.4 4.5 0.945
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!fx(v)l2 Buffalo Cairv Cairo Square Root
0 1.0000 1.0600 1.0000
1 .0203 L1391 .0705
2 .0187 .0192 L0142
3 .0053 .0215 .0222
4 .0196 L0496 .0289
5 .0169 .0317 .0181
=2 (m)
0 1.0000 1.0000 1.0000
1 .9797 .8609 .9295
2 .9657 .8199 .8963
3 .9559 .8179 .8603
4 .9367 .7883 .8570
5 .9021 .7610 .8404
AIC(m)
0 .0000 .0000 .0000
1 .0795 -.0497 .0269
2 .1651 .0014 .0905
3 .2549 .0990 .1495
4 .3346 .1622 . 2457
5 .3969 .2269 .3261
Minimum
At m = 0 1 0
CAT
0 -1.0000 -1.0000 -1.0000
1 - .9212 -1.0483 - .9709
2 - .8369 - .9877 - .9028
3 - 7497 - .8772 - .8373
4 - .6718 - .8020 - .7361
5 - .6076 - .7235 - .6504




90 [

1 7704MONS

—- —+

ISIHINIIBE-LEBT Of 6IRL-BI61 WOHS OHIHI N
S0 2 %0 20

£1°0 0|

']

NOSHSS

e

LdipuLce D

"
! |
|

Im'd’r—,

ROTLE04H3INT HUINIT ONISH (1D 8

A70Y JUYNOS 3Nl ie- 151 0 CIET-215T wOHS OHIBD ND VIeIMONS TNDSETS (SIHINI. ZE-(261 0L 6151-B161 WO 01HI4NE NI THIMONS “~NOSo2S
oo ! @0 &3 £ »0 xr 20 v o, 001 %0 <0 K 05°0 (N 20 &0 LKY
il SR A ot - P + + — 4
m

13 + —+ —+— — + -4

"~ i'A\xl'\I\. |
P e =

S 1

no

00°N
a3°0¢1

“olig haH3li &3KIT ONISH (D MO11970443INT HY3INTT ONISNH () C

.
[ i T




-30-

Figure C
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Figure D (cont)
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7. Quantile Simulation and Quantile Boot Strap.

The quantile function Q(u), 0 < u < 1 of a random variable
X provides a way of simulating a random sample of X. Let U

denote a random variable uniform on O to 1; then X L QL)

Let Ul’ e Un be independent uniform random variables; then
. L
4\1, ce ey )\.n = Q(Ul)’ D A ) Q(Un)
To generate a random sample Xl’ Ce Xn’ one generates n random
numbers Ul’ ..., U_and transforms them to X Lo, X
n 1’ ' n

To obtain by Monte Carlo methods the distribution of a

statistic

T = g(Xl, Cee, Xn) ,
one would generate a large number N of random samples Xl' cey Xn;
generate a random sample Tl' s, TN of the random variable T;

and finally form the sample quantile function QT(U) which provides
an estimator of the true quantile function of T.

When the quantile function Q(u) of X is not known, one can
estimate it by the sample quantile function Q(u) . Now f{rom
random numbers Ul' e Un' one can generate ''boot strap' simu-

lated values [compare Efron (1978)]

g(Xl, e, Xn)

X1 = Q(Ul), cees XO0T Q(Un), T
One can generate a random sample fl' v iN of T , whose sample

quantile function QT(U) provides an estimator of the true quantile

function of T.
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Bivariate distributions. An outstanding problem of

statistics is the simulation of multivariate distributions.
To illustrate the quantile approach to this problem, let
(Xl' X2) have joint distribution function F(xl, xz). Denote
the marginal distributions functions of Xy and Xy by Fj(x7p)
and Fz(xz). Denote the quantile functions of the marginal

distributions by Ql(ul) and Qz(uz) . Define
D(uy,uy) = F(Qu(uy) , Qy(uy))
it is the joint distribution function of the "rank transforms"

Up = Fi X)), Uy = FplXy)

One can generate (Xl,XZ) by generating (Ul'UZ) from the dis-

tribution D(ul,uz) and then forming

Xp = U)Xy = Qp(Uy)

To generate (U;, U,) one chooses U, to be uniform on
0 to 1, and then generates U2 by the conditiomal distribution

DU2|U1 (uyluy) or its quantile function QU2|U1 (pluy) by the

formula U,|U; = uy L QUZ‘UI (Ujluy) where U is uniform
on 0 to 1, and independent of U1 . The conditional quantile

function Q (pluy) can be estimated by the sample

quantile function of the sample values U, corresponding to

sample U1 values near uy .
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®. Quantile Formulation of Robust Location and Scale Estimators.
Assume a location-scale parameter model for the quantile

finction of a continuous random variable X: Q(u) = u + JQO(U)

Assume a symmetric distribution, which is equivalent to Qo(u)
being an odd function in the sense that Qo(l-u) = —Qo(u)

Given a sample Xl’ e, Xn’ the log likelihood function
may be written in terms of the sample quantile function [compare

Parzen (1979a)]:

L= log f(Xl, Cee, Xn;u,o)

) log 5 fo( - ) (1)

3

i=1
= -log o + [ _log fo(ﬁéﬂ) dF ()

= -log o + fé log fo(gigllg)du
o

The maximum likelihood estimators u and ¢ satisfy %% = 0 and

= 0 . An important role in these equations is played by the

gl

Fisher Score function

fb(x)

_ _ d
p(x) = - faz;y— = - gx log f(x) ; (2)
Between y and the score function Jo(u) = - (fOQO(u))' , there
——
— A

o
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is an important relation:

Jo(w) = u(Qy(w) (3)
The maximum likelihood estimators § and & are the solutions of

fo v AWzdygy = 0 (%)
a

flw Qs (qeuy-irdu = 5
81

Under the symmetry assumption one seeks robust estimators
of location; various standard estimators may be heuristically
motivated by approximating (4) in suitable ways.

M-estimators are defined by introducing a window

R

w(x) = P (x)
Then (4) may be written

fo wQE) (qeuy-i) du = 0
g

To estimate a, consider the limit of an iterative sequence ﬁ(n)
defined by
5 L)
(lw(giEl;i_,_) Q(u) du
~(n+l) *0 a )
u = (3

‘ -~ (n)
fow Rz Ty gy
o

~(n)

The estimator u is an M-estimator. For w(x) one could choose
a function which corresponds to Student's t distribution with

m degrees of freedom [see Parzen (1979a)]:
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wix) = L

Various widely used choices of +(<) are described in Hogg (1979).
The most widely used choice fc w(x) mav be Tukey's bisquare

window
wx) = (1-(5H5H2

where ¢ is a suitable constant, often chosen as 6. The choice
of m or ¢ is crucial; it should reflect one's beliefs about
how long are the tails of Fo(x).

L-estimators are linear combinations of order statistics
which can be written in terms of the quantile function Q(u) as

follows, for a suitable weight function Wu(u):

JQUWH (u) du
1
fowu(u)du

1 =

(6)

If the model Q = y +.oQ0 is assumed to hold, with a symmetric

QO' and one chooses

W (W) = v (Qg(u) 7
then u is an asymptotically efficient estimator of u. A rigorous

derivation of (6) and of (10) can be obtained from equation (3)

of section 9. A heuristic derivation of (6) from (4) is obtained

by writing

Qo) <y qu(w) + w'(qo(u)){g%l:B - Q) 8)

(o]
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Since O(Qo(u)) and Qo(u) are odd functions, and w'(QO(u)) is

even, the estimation equations for u are

0 = [guXRY) qu = [lu (Qq(w) (XM gy 9)
Y a

From (9) one obtains the estimator defined by (6) and (7) .
An estimator of o which is asymptotically efficient for the

model Q = u+v QO , when F_  is a symmetric distribution, is

0
 [Rw (uw)du
§ = ~? g (10)
IOQO(u)WO(u)du
where
Wo(w) = Jp(w) + QpwW (w) . (11

It is often the case that W (u) is approximately equal to Jg(w
(times a constant such as 1 or 2). This helps explain why the
following definition works.

Score deviations and minimum residual score deviation

estimators. It is a remarkable fact that one can define a uni-

versal (and robust) measure of deviation of a sample:

59 = g £oQu(w q(w du . (12)

Assuming that fOQO(u) Q(u) = 0 for u=0, 1, we can write 50

in the form

Sp = g Jow QW du (13)

which we call a sample score deviation. To calculate it one has

to specify a score function Jo(u). Note that 50 estimates a

population quantity defined by

e Ly,

e — J

B N s
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o9 = Ig Jp(w) Qu) du (14)

which we call a score deviation.
Robust estimators of location called R-estimators can be

interpreted as minimum "residual score deviation' cstimators.
More precisely suppose one estimates the location parameter u
by an estimator u whose residuals Q(u)-u have smallest score

deviation:
fé Jo(w) {Q(u) - uldu is minimized;

it can be shown that this is precisely the definition of
R-estimators. "
M-estimators can also be motivated from this point of view;

to avoid specifying Jo(u) = wO(QO(u)) in {13) one replaces

Qg (W) =

it by y(——5—

5 ) and the criterion to estimate py is to minimize

fo w2y gy - widu = J§ w2 (- ? du

whose solution might be sought as the limit of sequences g(n)
of the form of (5)

The fact that R and M estimators of u can be formulated
as minimum residual score deviation estimators seems to explain
why these methods can be extended to estimation of regression

coefficients. However L estimators do not have a natural

generalization to regression. Further R and M estimators yield

asymptotically equivalent results when their Jo(u) and y

functions satisfy (3).

- —ppe—- A et NP
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9. Data Summary by a Few Values of the Sample Quantile

Function.
To form an estimated quantile function Q(u), the simplest
approach is to first attempt to fit a parametric family of the

form
Q(u) = u + 0 Q(w) (D

where Qo(u) is a specified quantile function; y and o are called

location and scale parameters since F(x) = F (E%E

One seeks to form estimators 1 and o which are asymptotically
efficient under the hypothesis that the true quantile function

satisfies (1).

Some of the aims for which the quantile function approach
to statistical data analysis may provide rigorous, yet simple,
methods are as follows:

1. to provide approximately efficient estimators of u

and o under the hypothesis Hy: Q(uw) = u+o0 Qo(u) ;

2. to perform quick goodness of fit tests of HO, and/or

to find re-expressions (transformations) of the data
which satisfy HO;

3. to perform rigorous goodness of fit tests to identify

quantile functions Q0 for which the data satisfies

Hy, and/or to estimate the density-quantile function.
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Estimation of y and ¢ : Efficient and tractable estimators of

w and o which are linear functionals in Q(u) can be found using
the theory of regression analysis of continuous parameter time
series developed by Parzen (1961). The asymptotic distribution

theory of Q(u) permits us to write approximately
vn £Q(u) {Q(u) - Q(u)} = B(u)

Under HO,

Q) = w + 0 Qyw , £Qu) = F£,Qy(w) -
Consequently, defining og = a/vn ,
£0Q (W) Qu) = uEEQp(u) + ofpQu(u) Qgu) + op B(w) . (2)

The parameter Op is linearly related to o, but it is here treated

as a free parameter. In terms of the inner product of the RKHS
of the Brownian Bridge covariance kernel one may express the
minimum variance unbiased estimators p and 3 given Q(u) for

0<u<l,orp<ucx<gq, oru-= Uy --v, U as follows

>

fpQ, (£4Qp)Q>
=Inf"} i (3)
(£5Q9) Qs (£5Q Q>

a»

- ——a .,
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where Inf is the Information Matrix,

(EpQy: £5Qp)> <fOQO' (fOQJ)Q3>
Inf = (&)
<Qo(f0Q0). f0Q0> ((fOQO)Qo. (fOQO)QO>

2,

B {Inf)!

The variance-covariance matrix of u, ¢ equals ~

It should be emphasized that the foregoing expressions are
not valid if foQo(u) and (foQo(u)) QO(u) do not belong to the
RKHS, which can happen in the case of the index set 0 <u < 1.
Failure to belong to the RKHS seems to be equivalent to the
optimal parameter estimator involving a few extreme value order
statistics, which implies that the estimators are not asymptotically
normal.

If one could accomplish these aims using a '"'few' (say, 7)
selected order statistics, then one could regard these ''few'
order statistics as an efficient summary of the entire sample of
size n. If large samples (as well as small samples) could be
effectively represented by a small number of order statistics,
then every data set could be published and each reader could

easily do "hands on" statistical data analysis.

The problem of choosing order statistics for the estimation
of location and scale parameters has an extensive literature.
The density-quantile approach has been investigated by Eubank
(1979) in his Ph.D. thesis. By using location and scale estim-
ators based on only 7 quantile values for a specified QO' one
can identify 19 quantile values which are the union of these 7
values over a large number of familiar choices of QO' The proposed

19 number universal data summary consists of the median Q(0.5);
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the j/16 percentiles Q(j/16 | Q((8+3)/16) for j = 7,6,5,4,3,2,1,
and the .0l and .02 percentiles Q(0.01), §(0.02), Q(0.98),
6(0.99) . We reproduce Tables 31 and 32 of Eubank's thesis which
shows which of these order statistics are used to estimate lo-

cation and scale parameters of familiar probability laws.
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Table 31, Order Statistice Selection for Location

Parameter LEstimation by Seven Order

Statistics
Distyibution
Spacing Normal Cauchy Logistic Extreme Value
.01 4
.02 / 4
©.0625 Y
.125 v v/ v/ /
.875
.25 v Y /
.3125 v/
375 / v/
.4375 %
.5 v v/ v/
.5625
.625 / Y
.6875 4 /
.75 / /
.8125
.8175 / v/ v/
.9375
.98 4
.99 '
e———

N e e - -

—— ——
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